Part of the  

Chip Design Magazine

  Network

About  |  Contact

Headlines

Headlines

The Wheels of Industry Roll On

The wheels of industry roll on

Apart from pretzels and weissbier, Embedded World in Nuremberg was distinguished by the car, the factory and the IoT. By Caroline Hayes, Senior Editor.

On reflection, it should be no surprise that automotive themes were all around the exhibition halls of Embedded World 2014 in Nuremberg, Germany. The country produces 44% of the cars and light trucks manufactured in western Europe (defined as Europe apart from Turkey and the former communist bloc).

Software
My Embedded World began with a breakfast meeting at Cadence, where Senior Director, Frank Schirrmeister, outlined that the classic EDA model is evolving to what has been termed System Design Enablement. This shift is largely due to the growing electronics content in vehicles, he explained, with the proliferation of CAN (Controlled Area Network), LIN (Local Interconnect Network), MOST (Media Oriented Systems Transport), Ethernet and FlexRay protocols. “For the consumer, it is satellite navigation systems; it is under-the-hood with software and there is an automotive element to the IoT (Internet of Things),” he said.
Traditionally, he explained, Cadence’s domain was the SoC (System on Chip), augmented by the acquisitions last year of Tensilica, Cosmic Circuits and Evatronix. System Design Enablement is based around adding the software stack for applications: “We are broadening EDA to take the subsystem in the chip, and enable interaction between the hardware and software to broaden the system design environment.” Listing the company’s attributes for automotive, he ran down the list of Ethernet IP; virtual platforms, such as automated driver assist systems; FPGA platforms for prototyping, mixed signal for under-the-hood. The last two are also used in IoT. For embedded control, notes Schirrmeister, virtualization needs to adapt, with virtual hardware methodology to meet the complexities and variants of cars today. “We need more simulation that ever before – automotive is the second largest growth area in the USA, Europe and Japan.”

Industry
More rugged modes of transport were occupying Daniel Piper, Senior Marketing Manager, EMEA, Kontron. The company was highlighting embedded boards based on the Intel Atom E3800 and COM Express modules based on the Intel Atom E3800 and Intel Celeron N2900/J1900.
There was also the first SMARC (Smart Mobility ARChitecture) CoMs (Computer on Modules) – the first design from the German company based on an x86 Atom processor. The SMARC-sXBTi CoMs are scalable so that the same look and feel for software development can be shared in the industrial space, said Piper, reaching from the automated shop floor to the connected tablet. For this, the benefits of SMARC, the low power consumption and small footprint are exploited, says Piper. Power consumption is 5 to 10W and the low profile, mini-computer form factor measures 82x50mm. “As well as long-term availability [an average of seven years] the software services, low profile and low power consumption suit the mobile applications and interfaces, such as eye camera interfaces, that are adapted from the ARM world but on an x86.” This, he says, extends SMARC into x86 modules and markets, using the same form factor, which brings ease of use for the end customer.

Industrial virtualization
Perhaps the most targeted announcement of Embedded World was that from Intel, which announced virtualization platforms for industrial systems with software and tools to create industrial, embedded systems.
Jim Robinson, General Manager, Segments and Broad Market Division, Internet of Things Solutions Group, Intel, echoed Piper’s sentiment, that the industrial sector is looking for new, innovative ways to connect and build: “Bringing together what have typically been different sub-systems into a single computing platform, makes it easier – and more affordable – for OEMs, machine builders and system integrators to deliver consolidated, virtualized platforms,” he said.
The Intel Industrial Solutions Systems Consolidation Series bundles together an embedded computer with an Intel Core i7 processor and pre-integrated virtualization software stack, which includes Wind River Hypervisor, pre-configured to support three partitions, running Wind River VxWorks for real-time applications and Wind River Linux 5.0 for non-rea-time applications. Robinson explained that the role of virtualization is to partition important workloads using multiple virtual machines. With it, developers can consolidate multiple discrete sub-systems onto a single device, reducing costs, increasing flexibility and reducing factory space, he said.
Intel System Studio software tools were also announced. They are designed for the Industrial Solutions System Consolidation Series to build and analyse industrial, embedded systems.

The IoT network
The software and tool suite are part of the company’s Developer Program for Internet of Things. This was another phrase often heard, and seen, around the halls in Nuremberg.
Dan Demers, Director of Marketing, congatec, was enthusiastic about IoT for its role in bridging mobile connectivity into the industrial space. “The longevity of industrial applications, and the IoT, from mobile devices into the industrial area demands customised solutions. Markets are opening up, because silicon innovations are bringing the power consumption down and the performance levels up. Historically, we could not put an x86 processor on such a board – now we can. Off-the-shelf is the easiest option, but not all off-the-shelf offerings have the I/O requirements, so the next best thing is a CoM.” There are, he says many advantages to employing a CoM, such as reduced time to market, with around six to nine months development time.
ARM took a difference approach to the IoT. Its IP dominates phones today, shipping 20billion ARM-based mobile phone chips to date, but the IoT market could be 100billion connected devices. Chris Turner, Senior Product Marketing Manager, Processor Division, ARM, explained to me about the software layer of the IoT and security. “The ARM ecosystem demonstrates the underlying code – the hypervisors – the protocol stack and the partnerships within the ecosystems. It is a long product plan to build a hypervisor for an architecture and this is where the ecosystem co-operation comes into play.” The ARM ecosystem includes more than 1,000 partners, developers and engineers developing ARM-based solutions and providing support.
Still with the IoT, Wind River had a creative booth, which demonstrated device connectivity in many forms, supported by its Intelligent Device Platform. As well as IoT protocol support, the scalable, secure development environment supports WiFi, Bluetooth and ZigBee.
It can be customized, which reduces development time. Provisioning and device management is via a web-based tool. Security in any connected network is critical, particularly if used in public transport, where signaling has to be accurate and timely, to utilities, where companies not only want to prevent fraud, or theft, but also to protect against outages. A customized secure remote management feature provides encrypted communication between a device and cloud based management. Lua and Java programming environments are supported to allow engineers to build gateway applications, connect and to send and receive data from the cloud.

Although there were several themes at this year’s exhibition and conference, the healthy competition between the processor of choice and co-operation between software, chip and board companies to work together to integrate and innovate was encouraging both in terms of the economy and in terms of the potential for the diverse, engaging design initiatives of tomorrow.

Tags: , , , , , , ,

Leave a Reply